MASS SPECTROMETRIC FRAGMENTATION OF TRITERPENOID DERIVATIVES WITH OXABICYCLOOCTANE and oxabicycloheptane ring e arrangement*

J.Vokoun ${ }^{a}$, E.Klinotová ${ }^{b}$ and A.Vystrčil ${ }^{b}$
${ }^{a}$ Institute of Microbiology,
Czechoslovak Academy of Sciences, 14220 Prague 4, and
${ }^{b}$ Department of Organic Chemistry, Charles University, 12840 Prague 2

Received July 10th, 1975

The character of the mass spectra of triterpenoids derived from $20 \beta, 28$-epoxy- $18 \alpha, 19 \beta H$-ursane (I) is determined by the structure of the ring E. Fragmentation always takes place in ring E. Two types of fragmentation were found during which ring D is either preserved or cleaved. The type of fragmentation depends on the substitution at the positions $\mathrm{C}_{(21)}$ and $\mathrm{C}_{(22)}$.

In the preceding paper ${ }^{1}$ we discussed the structure elucidation and the reactivity of derivatives of $20 \beta, 28$-epoxy- $18 \alpha, 19 \beta H$-ursane (I). In connection with structure determination of these compounds the mass spectra of compounds $I I-X V I I I$ were studied and the results of these measurements are summarized in this paper (Table I). All compounds measured contain in their ring E an oxabicyclo [2,2,2]octane or oxabicyclo $[2,2,1]$ heptane system (anhydride $I I$ of oxabicyclo $[3,2,2]$ nonane), part of which is always the same tetrahydropyran ring cis annelated with ring D . The individual compounds differ only by the bridge over this tetrahydropyran ring between the positions 17 and 20 ; this bridge determines the character of the fragmentation.

EXPERIMENTAL

The measurement was carried out on a Varian MAT 311 spectrometer. The energy of the ionizing electrons was 70 eV and the ionizing electron current was 1 mA ; the temperature of the ion source was $200^{\circ} \mathrm{C}$ and the temperature of the direct inlet system was $150-200^{\circ} \mathrm{C}$. The high resolution measurements were carried out with an error not exceeding 5 p.p.m.

RESULTS AND DISCUSSION

The compounds measured can be divided into two groups depending on the type of bridging of the tetrahydropyran ring at the positions $\mathrm{C}_{(17)}$ and $\mathrm{C}_{(20)}$. The type A (compounds $I I-X$): The group forming the bridge is eliminated in the form of a neutral molecule (or neutral molecules), while ring D remains uncleaved (Scheme 1).

[^0]Table I

Ions of the Substances Measured

Small letters indicate the type of ion, see Schemes 1 and 2.

II (Anhydride of 3β-acetoxy-21,22-seco-20 ${ }^{2}, 28$-epoxy-18 $\alpha, 19 \beta \mathrm{H}$-ursane-21,22-dioic acid): $m / e 528\left(\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6}, 0 \cdot 1 \%, \mathrm{M}\right), 500\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{5}, 1 \cdot 6 \%, b\right), 456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 15 \cdot 0 \%, f\right)$, $440\left(\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}, 8 \cdot 7 \%\right.$, b), $425\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}, 7 \cdot 9 \%, 440-\mathrm{CH}_{3}\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 3.5 \%\right.$, f), $384\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}, 30.7 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 7.9 \%, g\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 52.8 \%\right)^{a}, 43(100 \%)^{b}$

III (3 β-Hydroxy-20ß,28-epoxy-21-oxa-18 $\alpha, 19 \beta H$-ursan-22-one): m/e $458\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4}, 5 \cdot 8 \%\right.$, M), $440\left(\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}, 5 \cdot 2 \%, b\right), 425\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}, 7 \cdot 0 \%, 440-\mathrm{CH}_{3}\right), 414\left(\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{2}\right.$, $12 \cdot 8 \%, f), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 7 \cdot 0 \%, f\right), 342\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}, 32 \cdot 6 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 7 \cdot 6 \%, g\right)$, $189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 59 \cdot 3 \%\right), 43(100 \%)$

IV (3 β-Acetoxy-20ß,28-epoxy-21-oxa- $18 \alpha, 19 \beta H$-ursan-22-one): m/e $500\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{5}, 1 \cdot 0 \%\right.$, M), $456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 15 \cdot 2 \%, f\right), 440\left(\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}, 9 \cdot 5 \%, b\right), 425\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}, 8 \cdot 6 \%\right.$, $\left.440-\mathrm{CH}_{3}\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 2 \cdot 9 \%, f\right), 384\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}, 28 \cdot 6 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 6 \cdot 2 \%, g\right)$, $189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 47 \cdot 1 \%\right), 43(100 \%)$
V (20ß,28-epoxy-21-oxa-18x,19ß H-urs-2-en-22-one): m/e $440\left(\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}, 10.8 \%, \mathrm{M}\right)$, $425\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}, 12 \cdot 8 \%, 440-\mathrm{CH}_{3}\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 22 \cdot 1 \%, f\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 41 \cdot 2 \%, g\right)$, $189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 60 \cdot 8 \%\right), 43(100 \%)$
$V I \quad$ (3 3 -Hydroxy-20ß,28-epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-ursan-22-one): $m / e 442\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{3}\right.$, $4 \cdot 4 \%, \mathrm{M}), 414\left(\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{2}, 27 \cdot 9 \%, f\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 15 \cdot 2 \%, f\right), 342\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}, 54 \cdot 4 \%\right.$, g), $324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 7 \cdot 6 \%, g\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 38 \cdot 0 \%\right), 43(100 \%)$

VII (3ß-Acetoxy-20ß,28-epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-úrsan-22-one): m/e $484 \quad\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{4}\right.$, $0 \cdot 1 \%, \mathrm{M}), 456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 15 \cdot 3 \%, f\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 5 \cdot 9 \%, f\right), 384\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}, 24 \cdot 7 \%\right.$, g), $324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 11 \cdot 8 \%, g\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 56 \cdot 5 \%\right), 43(100 \%)$

VIII ($3 \beta, 22 \xi$-Dihydroxy-20ß,28-epoxy-E(21)-nor-18 $\alpha, 19 \beta H$-ursane-22 -carboxyloic acid): m / e $488\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{5}, 4 \cdot 4 \%, \mathrm{M}\right), 414\left(\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{2}, 6 \cdot 0 \%, f\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 5 \cdot 5 \%, f\right), 342$ $\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}, 11 \cdot 7 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 4 \cdot 4 \%, g\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 20 \cdot 1 \%\right), 43(100 \%)$
$I X \quad(3 \beta, 22 \xi$-Diacetoxy-20 $\beta, 28$-epoxy- $E(21)$-nor- $18 \alpha, 19 \beta H$-ursane- 22ξ-carboxyloic acid): m / e $572\left(\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{7}, 0 \cdot 3 \%\right.$, M), $456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 8 \cdot 2 \%, f\right), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 2 \cdot 3 \%, f\right), 384$ $\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}, 8 \cdot 8 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}, 3 \cdot 8 \%, g\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 22 \cdot 0 \%\right), 43(100 \%)$
$X \quad$ (Methyl 3β-acetoxy-22 ξ-hydroxy-20ß,28-epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-ursane-22 ξ-carboxylate): m/e $544\left(\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{6}, 43 \cdot 6 \%, \mathrm{M}\right), 484\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{4}, 23 \cdot 1 \%\right.$, c $), 456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}\right.$, $68 \cdot 0 \%, f), 396\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}, 34 \cdot 6 \%, f\right), 384\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}, 83 \cdot 3 \%, g\right), 324\left(\mathrm{C}_{24} \mathrm{H}_{36}\right.$, $42 \cdot 3 \%, g), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 91 \cdot 7 \%\right), 43(100 \%)$
$X I \quad\left(20 \beta, 28\right.$-Epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-ursane- $3 \beta, 22 \alpha$-diol): $m / e 444\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{3}, 100 \%\right.$, M), $426\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2}, 8.1 \%, j\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 8 \cdot 8 \%, n\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 18.9 \%\right), 125\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}\right.$, $82 \cdot 4 \%, o), 43(45 \cdot 9 \%)$

XII (3 β-Acetoxy-20, 28 -epoxy- $E(21)$-nor- $18 \alpha, 19 \beta H$-ursan- 22α-ol): m/e $486 \quad\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}\right.$, 56.7%, M), $426\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2}, 10.3 \%, j\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 12.4 \%, n\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 28.9 \%\right)$, $125\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}, 100 \%, o\right), 43(64 \cdot 9 \%)$

Table I
(Continued)

XIII (3 $\beta, 22 \alpha$-Diacetoxy-20 $\beta, 28$-epoxy- $E(21)$-nor- $18 \alpha, 19 \beta H$-ursane): m/e $528 \quad\left(\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{5}\right.$, $35.5 \%, \mathrm{M}), 486\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}, 56.5 \%, j\right), 468\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{3}, 8 \cdot 1 \%, i\right), 426\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2}\right.$, $10 \cdot 5 \%, j), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 11 \cdot 3 \%, n\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 49 \cdot 2 \%\right), 125\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}, 87 \cdot 1 \%, o\right), 43$ (100\%)

XIV (3 β-Acetoxy-20ß,28-epoxy- $E(21)$-nor- $18 \alpha, 19 \beta H$-ursan- 22β-ol): m/e $486 \quad\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}\right.$, $94 \cdot 4 \%, \mathrm{M}), 426\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2}, 3 \cdot 3 \%, j\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 11 \cdot 1 \%, n\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 26 \cdot 7 \%\right)$, $125\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}, 100 \%, o\right), 43(96.7 \%)$

XV (3 $3,22 \beta$-Diacetoxy-20ß,28-epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-ursane): m/e $528 \quad\left(\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{5}\right.$, $51 \cdot 3 \%, \mathrm{M}), 486\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}, 60.0 \%, j\right), 468\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{3}, 3 \cdot 8 \%, i\right), 426\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2}, 3 \cdot 8 \%\right.$, j), $301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 7.5 \%, n\right), 189\left(\mathrm{C}_{14} \mathrm{H}_{21}, 25.0 \%\right), 125\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}, 48 \cdot 8 \%, o\right), 43(100 \%)$

XVI (22 -Hydroxymethyl-20ß,28-epoxy- $E(21)$-nor- $18 \alpha, 19 \beta H$-ursane- $3 \beta, 22 \xi$-diol): m/e 474 $\left(\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4}, 1 \cdot 5 \%, \mathrm{M}\right), 456\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 16 \cdot 2 \%, k\right), 438\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}, 11 \cdot 1 \%, l\right), 410$ $\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}, 12 \cdot 1 \%, m\right), 395\left(\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}, 12 \cdot 1 \%, 410-\mathrm{CH}_{3}\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 9 \cdot 1 \%, n\right), 189$ $\left(\mathrm{C}_{14} \mathrm{H}_{21}, 90.9 \%\right), 109\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}, 100 \%, p\right), 43(66.7 \%)$

XVII (3 β-Acetoxy-22 -acetoxymethyl-20ß,28-epoxy- $E(21)$-nor-18 $\alpha, 19 \beta H$-ursan- 22ξ-ol): $m / e 558$ $\left(\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{6}, 0 \cdot 2 \%, \mathrm{M}\right), 498\left(\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}, 34 \cdot 3 \%, k\right), 438\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}, 37 \cdot 3 \%, l\right), 410$ $\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}, 2.9 \%, m\right), 395\left(\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}, 26 \cdot 5 \%, 410-\mathrm{CH}_{3}\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 5.9 \%, n\right), 189$ $\left(\mathrm{C}_{14} \mathrm{H}_{21}, 71.6 \%\right), 109\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}, 56.9 \%, p\right), 43(100 \%)$

XVIII (3ß-Acetoxy-20ß,28-epoxy-18, $19 \beta H$-ursan-21-one): m/e $498\left(\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}, 0.7 \%, \mathrm{M}\right)$, $470\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}, 1 \cdot 8 \%, m\right), 438\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}, 0.7 \%, l\right), 410\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}, 0.8 \%, m\right), 395$ $\left(\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}, 1 \cdot 7 \%, 410-\mathrm{CH}_{3}\right), 361\left(\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{2}, 1 \cdot 1 \%, n\right), 301\left(\mathrm{C}_{22} \mathrm{H}_{37}, 9 \cdot 0 \%, n\right), 189$ $\left(\mathrm{C}_{14} \mathrm{H}_{21}, 7.9 \%\right), 109\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}, 100 \%, p\right), 43(25 \cdot 8 \%)$
${ }^{a}$ Ion characteristic of pentacyclic triterpenoids ${ }^{2}$. ${ }^{b}$ Mixture of ions $\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ from ring E of compounds of type A and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ from ring A of 3β-acetoxy derivatives.

Type B (compounds $X I-X V I I I$): The group forming the bridge is not eliminated and ring D is cleaved (Scheme 2). The following groups are eliminated: $-\mathrm{CO}-\mathrm{O}-\mathrm{CO}-,-\mathrm{O}-\mathrm{CO}-,-\mathrm{CO}-\mathrm{C}(\mathrm{OH})(\mathrm{COOH})-,-\mathrm{C}\left(\mathrm{OCOCH}_{3}\right)$. $.(\mathrm{COOH})-$ and $-\mathrm{C}(\mathrm{OH})\left(\mathrm{COOCH}_{3}\right)$-. The following groups are not eliminated: $-\mathrm{CH}(\mathrm{OH})-,-\mathrm{CH}\left(\mathrm{OCOCH}_{3}\right),-\mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{2} \mathrm{OH}\right)-,-\mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{2} \mathrm{OCOCH}_{3}\right)-$, and $-\mathrm{COCH}_{2}-$.

Fragmentation of Compounds of Type $A(I I-X)$

The elimination of the group bridging the tetrahydropyran ring aims at the ion f which is fragmented both simply to the ion $h(m / e 43)$ and to the ion g by the elimination of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ through McLafferty's rearrangement. The substituent in the

Scheme 1

Scheme 2

position 3β, together with the hydrogen from the neighbouring position, is eliminated as water or acetic acid at the level of fragments b, f and g. The elimination of water or acetic acid from the molecular ion was observed only with substances $I I I$, $I V$ and X.

$!$

$$
\begin{aligned}
V I, \mathrm{R} & =\mathrm{H} \\
V I I . \mathrm{R} & =\mathrm{COCH}_{3}
\end{aligned}
$$

VIII, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
IX. $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{COCH}_{3}, \mathrm{R}^{3}=\mathrm{H}$
d. $\mathrm{R}^{1}=\mathrm{COCH}_{3} \cdot \mathrm{R}^{2}=\mathrm{H} \cdot \mathrm{R}^{3}=\mathrm{CH}_{3}$

Fragmentation of Compounds of Type B (XI-XVIII)
The ion j or m is common to all substances of this type. It may represent the molecular ion or a fragment. It is cleaved at the tetrahydropyran ring and ring D under two hydrogen atoms transfer, giving rise to ions n and o or p. During this the charge on the oxygen heteroatom of ring E prevails and the ions o and p are by one order of magnitude more intensive than the ion n. The ion j as a fragment is formed from the ion i by elimination of $\mathrm{CH}_{2} \mathrm{CO}$. The ion m is formed from the ion k by elimination of $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$ or $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CO}$, from ion l by elimination of CO . The elimination of water or acetic acid from ring A is mostly restricted to the molecular ion. Compounds XIII and XV are exceptions in which elimination of acetic acid
takes place also from the fragment j, and also compound XVIII is an exception in which acetic acid is eliminated also from fragments m and n. The pair of the $\mathrm{C}_{(22)}$ epimeric hydroxy derivatives $X I I$ and $X I V$ and their acetyl derivatives $X I I I$ and $X V$ have the same m / e values and approximately equal relative intensities of the corresponding ions in low-resolution records. Supposing that the ion l, formed from the ion k, possesses the same structure as the molecular ion of compound $X V I I I$, the decomposition of the ion c may be visualized in an analogous manner. However, the ion d was not found in the spectra and the corresponding substance could not be prepared.

XI. $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$
$X I I, \mathrm{R}^{1}=\mathrm{COCH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$
XIII, $\mathrm{R}^{1}=\mathrm{COCH}_{3}, \mathrm{R}^{2}=\mathrm{H} \cdot \mathrm{R}^{3}=\mathrm{OCOCH}_{3}$
$X I V, \mathrm{R}^{1}=\mathrm{COCH}_{3}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$
$X V, \mathrm{R}^{1}=\mathrm{COCH}_{3}, \mathrm{R}^{2}=\mathrm{OCOCH}_{3}, \mathrm{R}=\mathrm{H}$

$X V I, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
XFII. $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{COCH}_{3}$

XVIII

The measurement of the metastable ions by the DADI (direct analysis of daughter ions) technique confirmed the $a \rightarrow b$ transition for substance $I I$ (type A), the sequence $b \rightarrow f \rightarrow g$ for substance $V($ type $A)$, and the decomposition $l \rightarrow m \rightarrow n$ for
compound $X V I I I($ type $B)$.

REfERENCES

1. Klinotová E., Beneš J., Vokoun J., Vystrčil A.: This Journal 41, 271 (1976).
2. Budzikiewicz H., Djerassi C., Williams D. H.: Structure Elucidation of Natural Products by Mass Spectrometry, Vol. 2, p. 137. Holden-Day, San Francisco, London, Amsterdam 1964.

Translated by 之े. Procházka.

[^0]: * Part L in the series Triterpenes; Part IL: This Journal 4l, 1200 (1976).

